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ABSTRACT
Summary: We present ChAsE, a cross-platform desktop application
developed for interactive visualization, exploration and clustering of
epigenomic data such as ChIP-seq experiments. ChAsE is designed
and developed in close collaboration with several groups of biologists
and bioinformaticians with a focus on usability and interactivity. Data
can be analyzed through k-means clustering, specifying presence or
absence of signal in epigenetic data, and performing set operations
between clusters. Results can be explored in an interactive heat map
and profile plot interface and exported for downstream analysis or as
high quality figures suitable for publications.
Availability: Software, source code (MIT License), data, and video
tutorials available at http://chase.cs.univie.ac.at .
Contact: mkarimi@brc.ubc.ca

1 INTRODUCTION
Epigenetics is the study of changes in the regulation of gene
activity and expression that are not dependent on gene sequence.
Advances in DNA sequencing technology have enabled researchers
to investigate the epigenetic state of cells by profiling modifications
such as histone methylation across the whole genome using
techniques such as chromatin immunoprecipitation followed by
sequencing (ChIP-seq). While computational methods to interpret
ChIP-seq data continue to evolve and improve, many questions
cannot be easily addressed in an automated fashion, and biologists
need to be engaged directly in data processing and interpretation.

Several techniques such as ChromaSig (Honet al., 2008) and
ChromHMM (Ernst and Kellis, 2010) use probabilistic methods for
the discovery of epigenetic signatures, but often require significant
computational skill to use. Platforms such as Cistrome (Liu
et al., 2011) and SeqMonk (www.bioinformatics.babraham.ac.uk/
projects/seqmonk) provide a tool chain of diverse analysis methods
and graphical interfaces for improved usability; however, they offer
limited interactivity and visualization. Genome browsers such as
the WashU Epigenome Browser (Zhouet al., 2011) are popular
interactive visualization tools that plot data along a reference
genome coordinate and display epigenomic marks as separate tracks
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vertically stacked to facilitate comparison. Local regions can be
viewed one-at-a-time, but obtaining an overview of global data
patterns can be challenging. More recently, Epiviz (Chelaruet al.,
2014) provides a scripting interface in addition to the genome
browser, to allow invoking R functions and displaying the results
within the tool, however, this extension remains accessible only to
users with relevant technical skills.

To lower this computational barrier, we had previously developed
Spark (Nielsenet al., 2012) which employed an interactive
visualization for pattern discovery, particularly in the early data
exploration phases. However, support for cluster comparison
and the ability to directly query for clusters with specific data
patterns remain outstanding needs. In addition we realized that
most biologists prefer a standard heat map visualization for
communicating and publishing results.

Observing the limitations of available solutions, we designed
and developed ChAsE in close collaboration with several groups
of biologists and bioinformaticians with a focus on usability and
interactivity. The main features include:

• exploration through multiple linked interfaces including an
interactive heat map and profile plot.

• automatic clustering using k-means or manual clustering by
sorting and selecting items in the heat map.

• querying for absence or presence of signal in epigenomic marks

• comparing clusters by performing set operations

• exporting results for downstream analysis as well as producing
high quality figures for publications. (examples included in the
supplementary document)

2 METHODS

2.1 Data Input
The input dialog allows users to specify one or more marks as genome-wide
read density data files (in Wig or bigWig formats) and a single region set
containing genomic intervals of interest, such as regions around transcription
start sites (in GFF or BED formats). Other parameters such as binning and
normalization can be specified to allow for effective comparison of different
marks on a uniform scale. The processing time depends on the size of the
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Fig. 1. ChAsE Interface: (a) Workspace Pane, (b) Favourites Pane, (c)
Heat Map Pane, (d) Plot Pane, (e) Method Pane with K-means currently
active, alternatively (f) Method Pane with Signal Query Method, (g) Method
Pane with Comparison Method. The heat map is sorted by average CpG as
indicated by the black inverted triangle.

input and typically takes a few minutes per mark; however the processed
data are stored so future loading will be only a few seconds per data.

2.2 Exploration
The graphical user interface consists of multiple linked panes. The
“Workspace” pane (Fig. 1(a)) shows a snapshot of the current analysis and
is organized in a table layout where columns correspond to marks and rows
correspond to subsets (clusters). Mark names are shown above the columns
and clusters can have user specified labels. Each cell shows an average of
the data for one mark in a subset as a profile plot, where the x-axis is relative
position in the region and the y-axis is the signal value. For each subset, the
left most column shows an overlay of the profile plots of all marks, as well
as the size of the subset. Subsets can also be added to the “Favourites” pane
(Fig. 1(b)), and brought back to the workspace as needed.

The “Heat map” pane (Fig. 1(c)) displays a heat map view of the subsets.
Each pixel row corresponds to one or more genomic regions and columns
correspond to marks. The rows have a consistent order across the columns
and can be sorted by several criteria such as signal average or user specified
annotations. Users can interactively zoom and pan the heat map or drag over
the heat map and create a subset of the selected regions.

The “Plot” pane (Fig. 1(d)) shows a zoomed version of a single profile plot
or the overlay plot where the profiles of all marks for a subset are displayed
together. As the user moves the mouse over the plots, the corresponding
mark is highlighted in the plot legend and across other panes.

Users can add custom labels to the subsets and export them as BED or
GFF files (same format as the input regions file) for downstream analysis.
In addition, the heat map or profile plots can be customized and exported to
PDF format suitable for communication or publication of the findings.

2.3 Analysis
Methods are accessed from the menu and appear above the workspace pane
(Fig. 1(e)). The “K-means” method allows performing a clustering on the
currently selected subset or the entire dataset. A user can indicate the number
of clusters and toggle the check-boxes above the marks to specify which

marks are included in the clustering. Clicking the “Run” button executes
the clustering and the results appear in the workspace in a tree structure.
As the exploration continues, the user might be clustering subsets. To help
him/her capture the exploration history, the clusters and subsequent cluster
are organized in a hierarchical tree interface.

Subsets with child nodes are shown by a⊖ sign when expanded or⊕ sign
when collapsed, and the leaf nodes are represented with solid circles. The
user can further select a subset and perform clustering hierarchically.

The “Signal Query” method shown in Fig. 1(f) allows users to find regions
with the signal present or absent in any combination of the marks. Once
selected, the first row shows the input region sets with on/off switches
allowing the user to specify either presence (on-selected), absence (off-
selected) or no preference (neither selected). A region is considered having a
signal if there is any enrichment of the corresponding mark within the bounds
of the region. This would be most effective if the enrichment peaks have
already been detected through a peak finding tool such as FindPeaks (Fejes
et al., 2008). The second row shows a preview of the result for the currently
selected combination and is dynamically updated as the user makes changes.
Upon clicking the “Add” button, the result is added to the Workspace.

The “Comparison” method shown in Fig. 1(g) allows the user to perform
intersections across multiple subsets. The check box on the left of the
summary plot for each subset allows the user to specify either inclusion
(set intersection) or exclusion (set subtraction) of the set regions. Any
subset currently present in the workspace may be used in the comparison
method. For instance, the clusters might be from different runs of k-means
on different marks or results of the signal query.

3 APPLICATION
We used ChAsE to study the relationships between DNA
methylation, histone modifications, and several DNA-binding
regulatory proteins in mouse embryonic stem cells (mESCs) (data
available at the tool website). After loading the data, we performed
a clustering across promoter regions using ChIP-seq data for
H3K4me3 and H3K27me3, histone modifications characteristic
of transcriptionally active and silent promoters, respectively.
We specified these two marks for clustering by selecting the
corresponding check boxes in k-means pane (Fig. 1(e)). The
clustering results are shown in a tree in the workspace pane
in Fig. 1(a) with each cluster connected to the corresponding
section in the heat map in Fig. 1(c). The top cluster shows low
H3K27me3 (blue) and moderate to high H3K4me3 (yellow-red)
indicative of “active” promoters. In contrast, the middle cluster
has moderate H3K4me3 and H3K27me3 (blue-yellow) typical of
transcriptionally poised or “bivalent” promoters. The bottom cluster
contains low levels of both modifications (blue) indicative of
“inactive” promoters. We used the contextual menu to appropriately
label each of the clusters in the workspace pane.

We wanted to examine the DNA methylation status of these
subpopulations, as well as to study the TET family of proteins
known to catalyze the oxidation of 5-methylcytosine (5mC) to 5-
hydroxylmethylcytosine (5hmC). Consistent with recent reports (Yu
et al., 2012), we observed high levels of 5hmC in the presence
of TET1 at bivalent promoters in the middle cluster of Fig. 1(c).
Intriguingly, the top cluster of Fig. 1(c) shows high levels of TET1,
but only low to moderate levels of 5mC and 5hmC consistent with
the model that H3K4me3-marked promoters harbor very low levels
of DNA methylation. We also investigated the enrichment of the
ESET histone methyltransferase at gene promoters. This protein
catalyzes the methylation of H3K9 and deposition of H3K9me3 at
retrotransposons and certain gene promoters (Karimiet al., 2011).
Examining H3K9me3 and ESET ChIP-seq data sets revealed that
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ESET bound promoters in the top and middle clusters were almost
all devoid of H3K9me3. This raised the possibility that ESET
functions at promoters independent of its catalytic activity, perhaps
to positively influence transcription. Furthermore, the presence of
H3K4me3 at both the top and middle clusters may prevent the
bound ESET from depositing H3K9me3 at such genomic sites.
Although these observations have yet to be validated by further lab
experiments, this example demonstrated the effectiveness of ChAsE
for deriving new hypotheses.
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